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I. GoalV
High-throVghpVt eYperimental measVrements can resVlt in lists of genes that are difmcVlt to interpret at face WalVe. ‘Enrichment
analZses’ aim to draX oVt meaningfVl, potentiallZ interesting biological themes from the gene-based measVrements.

In general, enrichment methods reqVire a collection of candidate sets of genes Xith shared attribVtes, for instance
membership in a pathXaZ or location on a chromosome. Gene sets are cVrated in biological databases, most notablZ the
classes described Xithin the Gene OntologZ GO (AshbVrner 2000). One class of enrichment analZsis methods seek to identifZ
those gene sets that share an VnVsVallZ large nVmber of genes Xith a list deriWed from eYperimental measVrements. BeloX,
Xe describe Fisher’s EYact Test, Xhich is a classic statistical test for determining Xhat ‘VnVsVallZ large’ might be.

BZ then end of this primer ZoV Xill:

1. Be familiar Xith hoX Fisher’s EYact Test is Vsed to determine enrichment
2. Be aXare of the meaning of a p-WalVe arising from Fisher’s EYact Test

II. SeWXS foU enUichmenW anal\ViV

ConWingenc\ WableV
Data from eYperiments can often be classimed in seWeral XaZs, for eYample, bZ age, gender and treatment response. One
maZ Xonder if the proportions Xithin one categorZ are associated Xith the proportions of another categorZ. In the case Xhere
there are tXo categories of interest the data can be displaZed as a 2-bZ-2 conUingencZ Uable.

A conUingencZ Uable shoXs the distribVtion of one Wariable in roXs and another in colVmns, Vsed to stVdZ the
association betXeen the tXo Wariables.

A gene e[SUeVVion VWXd\
SVppose Xe had measVred gene eYpression Vpon treatment of cells Xith a drVg. We coVld ask the qVestion: Is there anZ
association betXeen differentiallZ eYpressed genes and annotations for anZ giWen GO term? In other Xords, are the changes
in gene eYpression enriched for anZ gene set from GO?

For the pVrposes of this discVssion let Vs restrict oVr attention to a single gene set, specimcallZ genes annotated Xith the GO
biological process term ‘DNA-templated transcription, elongation (GO:0006354)’. Table 1 depicts a contingencZ table
corresponding to some highlZ-simplimed eYperimental resVlts.

Kristin C Gunsalus
Source: https://pathwaycommons.github.io/guide/primers/statistics/fishers_exact_test/
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Table 1. Contingenc\ table for gene e[pression data

In this case, the eYpression of 30 genes has been analZ[ed: 15 differentiallZ eYpressed genes Xere identimed and 15 genes
Xere associated Xith the GO term ‘‘DNA-templated transcription, elongation’. The totals for differential eYpression and gene
set membership are the marginal WalVes, as theZ lie on the peripherZ of oVr 2-bZ-2 table.

The middle cells contain joinU WalVes becaVse theZ represent genes falling Vnder tXo categories (Table 1, light blVe). Here, 12
genes are both differentiallZ eYpressed and tagged Xith ‘translation initiation’. This seems like a large proportion of the
marginal differentiallZ eYpressed gene total (12/15 differentiallZ eYpressed genes) and oVr intVition might lead Vs to the opinion
that this is a resVlt Xorth folloXing Vp ony

We seemed qVite conmdent that obserWing 12 differentiallZ eYpressed genes oVt of 15 in the gene set seemed like enoVgh
eWidence to sVggest that oVr drVg indVced eYpression changes associated Xith transcription elongation. HoXeWer, Xhat XoVld
Xe think if onlZ 9 met both criteria? FVrthermore, a more realistic large-scale eYpression analZsis might inWolWed thoVsands of
genes obserWed rather than jVst 30. It is clear that Xe Zearn for a XaZ to make oVr decisions less arbitrarZ.

III. FiVheU·V E[acW TeVW

WhaW aUe Whe chanceV?
Fisher’s eYact test is a statistical procedVre deWeloped bZ R. A. Fisher in the mid 1930’s (Fisher 1935). StrictlZ speaking, the
test is Vsed to determine the probabilities of obserWing the WarioVs joint WalVes Xithin a contingencZ table Vnder tXo important
assVmptions:

1. The marginal WalVes are mYed
2. There is no association betXeen categorical WalVes

These assVmptions constitVte the ‘nVll hZpothesis’ ( ): We take the a priori stance that the categories are independent. We
simplZ don’t knoX the groVnd trVth of Xhether there eYists a relationship betXeen the drVg-indVced gene eYpression changes
and genes inWolWed in transcription elongation. ConseqVentlZ, Xe take oVr actVal contingencZ table data and calcVlate the
probabilitZ that this or anZ table Xith more eYtreme joint WalVes (VnobserWed) XoVld occVr Vnder the nVll hZpothesis. A small
probabilitZ is interpreted as a discrepancZ betXeen the data and the nVll hZpothesis of no association betXeen Wariables.
These calcVlated probabilities are referred to as ‘p-WalVes’.

Smaller p-WalVes point to an interesting resVlt onlZ if all of the assVmptions Vsed to compVte the p-WalVe are
Walid

The SoVVibiliWieV aUe noW endleVV
Let Vs retVrn to the gene eYpression analZsis eYample. Fisher’s EYact Test proWides a statistical basis Vpon Xhich to establish
hoX eYtreme oVr particVlar table of obserWations are in relation to all possible ones that could haYe giYen those same marginal
totals giYen no association betZeen categories. With this in mind, Xe simplZ enVmerate the different joint WalVes that are
possible for the same marginal totals (FigVre 1).
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LeW XV coXnW Whe Za\V
There maZ eYist 16 possible arrangements of joint WalVes for mYed marginal totals, hoXeWer, this does not implZ that each is
eqVallZ likelZ. To see XhZ, consider the arrangement in the mrst roX and second colVmn of (FigVre 1; R1-C2): This arrangement
is reprodVced in Table 2 and shoXs 1 differentiallZ eYpressed gene that is a member of the gene set. To calcVlate the
probabilitZ of this (VnobserWed) arrangement Vnder the nVll hZpothesis, Xe Xill make Vse of the rVles for combinations.

Table 2. Contingenc\ table for arrangement R1-C2

R.A. Fisher’s insight Xas to leWerage the rVles for enVmerating combinations to deriWe an eYact probabilitZ for anZ giWen
contingencZ table Vnder the nVll hZpothesis. Looking back at Table I, Xe mVst mrst calcVlate the XaZs that each of the joint
WalVes coVld haWe arisen simplZ bZ randomlZ selecting genes. We illVstrate the process for the arrangement in Table 2 and the
process proceeds bZ calcVlating three WalVes, one for each roX:

1. WaZs to select 1 differentiallZ eYpressed gene XiUhoVU replacemenU oVt of 15 tagged IN the gene set
2. WaZs to select 14 differentiallZ eYpressed genes XiUhoVU replacemenU from 15 tagged NOT IN the gene set
3. WaZs to select 15 differentiallZ eYpressed genes XiUhoVU replacemenU from 30 total genes

Figure 1. Possible joint Yalues of the contingenc\ table. The 16 possible joint WalVes Xith the condition that the roX and
colVmn sVms remain mYed. The labels and marginal totals are identical to Table 1 bVt left oVt for claritZ. The tables are
arranged bZ increasing WalVe of the top left qVadrant, representing differentiallZ eYpressed genes and those Xithin the
gene set.
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These three WalVes are sVfmcient to calcVlate the probabilitZ of anZ particVlar contingencZ table. The mrst nVmber represents
the XaZs 1 differentiallZ eYpressed gene can be selected from 15 possible ‘IN Transcription elongation’ (FigVre 2, top left). In
statistical jargon, this is described as ‘15 choose 1’. There are eYactlZ 15 XaZs this can be done: One for each of the 15 genes
Xith the tag.

SimilarlZ, there are ‘15 choose 14’ or 15 XaZs that 14 differentiallZ eYpressed genes can be selected from 15 ‘NOT IN
Transcription elongation’. To see this, consider the 15 genes labeled 16 throVgh 30 in the top right groVp of FigVre 2. We can
choose 14 genes bZ selecting those labelled 16 throVgh 29. AlternatiWelZ, one can also select 16 throVgh 28 then 30 and so
on. The third nVmber ‘30 Choose 15’ is preciselZ 155 117 520.

The probabilitZ of obserWing this arrangement then is giWen bZ the qVotient:

Some of ZoV maZ recogni[e the eYpression on the left as the probabilitZ fVnction for the hZpergeometric distribVtion.

WhaW aUe Whe SUobabiliWieV?
At this point Xe haWe the basic bVilding blocks to describe Fisher’s EYact Test. Fisher’s EYact Test amoVnts to sVmming the
probabilitZ of obserWing oVr table of obserWed joint WalVes in addition to those more e[treme than our table. The possible
tables and their respectiWe probabilities are displaZed in red FigVre 3.

Figure 2. Calculations underl\ing the probabilit\ of a contingenc\ table. The three groVps correspond to the marginal
totals for each roX in Table 2. A contingencZ tablehs total probabilitZ is demned bZ the three probabilities of choosing
differentiallZ eYpressed genes from each groVp: 1 differentiallZ eYpressed gene from hIN Transcription elongationh; 14
from hNOT IN Transcription elongationh; and 15 differentiallZ eYpressed genes from the 30 total genes.



5/�

One-Sided WeVWV
FigVre 3 shoXs that oVr obserWed resVlt in Table 1 has a probabilitZ eqVal to 1.33E-03 (FigVre 3, R4-C1). The one-sided test
reqVires Vs to sVm the probabilities of the obserWed table and those VnobserWed tables Xhich possess more than 12 genes
the are differentiallZ eYpressed (DE) and IN the gene set (FigVre 3, red)

From this resVlt, Xe claim that the probabilitZ of oVr obserWed data or that more eYtreme Vnder the assVmption that there is no
association betXeen eYpression and gene set membership is 0.0014. Whether this represents an interesting discrepancZ from
the nVll hZpothesis, an eYperiment Xorth repeating, or an ‘enrichment’ of genes in the set amongst differentiallZ eYpressed
genes is left Vp to the researcher’s interest and eYpertise.

TZo-Sided WeVWV
We haWe not Zet considered the possibilitZ that differentiallZ eYpressed genes maZ contain feXer members of the gene set
than XoVld be eYpected if genes Xere sampled randomlZ, that is, differentiallZ eYpressed genes are Vnderrepresented for ‘IN
Transcription elongation’. The tXo-sided Fisher’s EYact Test accoVnts for both enrichment and depletion. AlthoVgh there are
seWeral naWoVrs of the test (RiWals 2006), Xe demonstrate an approach XherebZ the tables Xith probabilities smaller than oVr
obserWed data are sVmmed

Figure 3. Probabilities of the Yarious contingenc\ table joint Yalues. ShoXn are the 16 possible arrangements of joint
WalVes Xith the condition that the roX and colVmn sVms remain mYed. Underneath each is the probabilitZ (p) calcVlated
Vsing the probabilitZ fVnction of the hZpergeometric distribVtion. The red tables represent those haWing joint WalVes eqVal
to or more eYtreme than 12 genes both differentiallZ eYpressed and tagged Xith hIN Translation Initiationh.
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This resVlt is jVst Vnder doVble the one-sided p-WalVe, resVlting from an ‘VneWen’ distribVtion of p-WalVes aboVt the mean.
Once again, Xhether this represents a WalVable discrepancZ from the nVll hZpothesis and an obserWation Xorth folloXing Vp
on is left Vp to the discretion of the researcher.

IV. CalcXlaWionV in R
The R project for statistical compVting is popVlar softXare Xithin the bioinformatics commVnitZ becaVse of it’s Xide sVpport
and manZ helpfVl packages that facilitate common analZses. We can easilZ perform the calcVlations described aboWe Vsing
the bVilt-in stat  package Xhich haWe fVnctions for the H\pergeometric  distribVtion:

H\pergeometric ^stats` R DocXmentation 
# The H\pergeometric DistribXtion 
 
## Description 
 
Densit\, distribXtion fXnction, qXantile fXnction and random generation for the h\pergeometric distribXtion. 
 
## Usage 
 
dh\per([, m, n, k, log = FALSE) 
ph\per(q, m, n, k, loZer.tail = TRUE, log.p = FALSE) 
qh\per(p, m, n, k, loZer.tail = TRUE, log.p = FALSE) 
rh\per(nn, m, n, k) 
 
## ArgXments 
 
[, q 
Yector of qXantiles representing the nXmber of Zhite balls draZn ZithoXt replacement from an Xrn Zhich contains 
both black and Zhite balls. 
m 
the nXmber of Zhite balls in the Xrn. 
n 
the nXmber of black balls in the Xrn. 
k 
the nXmber of balls draZn from the Xrn. 
... 

It maZ not be obWioVs hoX to translate the description of argVments for the HZpergeometric densitZ fVnction dh\per  to oVr
particVlar case. Table 3 beloX sVmmari[es Xhat these mean in terms of oVr contingencZ table.

Table 3. Arguments for the R stat package function dh\per

With this knoXledge in hand, it is triWial to reprodVce the p-WalVes described preWioVslZ.
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# Initiali]e Yariables
m <- 15       # Genes IN GO term
n <- 15       # Genes NOT IN GO term
k <- 15       # Gene hits, that is, differentiall\ e[pressed
[ <- c(0:15)  # Genes both IN GO term and differentiall\ e[pressed 'hits' 
 
# Use the dh\per bXilt-in fXnction for h\pergeometric densit\
probabilities <- dh\per([, m, n, k, log = FALSE)
probabilities

##  [1] 6.446725e-09 1.450513e-06 7.107514e-05 1.334633e-03 1.201170e-02 
##  [6] 5.813662e-02 1.614906e-01 2.669539e-01 2.669539e-01 1.614906e-01 
## [11] 5.813662e-02 1.201170e-02 1.334633e-03 7.107514e-05 1.450513e-06 
## [16] 6.446725e-09

According to FigVre 3, oVr one-sided p-WalVe is the sVm of the probabilities of a resVlt at least as eYtreme as that obserWed,
giWen the nVll hZpothesis.

# CalcXlate the one-sided p-YalXe for 12 or more genes both DE and IN GO term.
pYalXe <- sXm(probabilities[13:16])
pYalXe

## [1] 0.001407165

Let’s plot the resVlts, Xith oVr eYtreme WalVes inclVded in the p-WalVe highlighted in red.

# Bar plot
librar\(ggplot2)
data <- data.frame( [ = [, \ = probabilities )
ggplot(data, aes([=factor([), \=\)) +
theme(a[is.te[t=element_te[t(si]e=14), 
  a[is.title=element_te[t(si]e=18,face="bold"), 
  a[is.title.[=element_te[t(margin=margin(20,0,0,0)), 
  a[is.title.\=element_te[t(margin=margin(0,20,0,0))
) +
geom_bar(stat="identit\", fill=ifelse(data$[ < 12, 
                                 rgb(52, 73, 94, ma[ColorValXe=255), 
                                 rgb(231, 76, 60, ma[ColorValXe=255)), 
                               coloXr="black") +
labs([ = "DE genes IN GO term", \ = "Probabilit\")
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V. CaYeaWV
There has been mVch discVssion Xith regards to the assVmptions, limitations, and oWerall releWance of this class of
procedVres (Khatri 2005, Goeman 2007). We leaWe these more nVanced discVssions for the reader to folloX.
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