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The hypergeometric distribution is similar to the binomial distribution, except it defines the probability
of obtaining x independent successes when sampling without replacement. The basic question can be
thought of this way:

If we randomly pick a group of items from a finite total, what is the chance that the overlap
with a second group would be more (or less) than expected by chance?

The hypergeometric distribution is classically described in terms of an urn containing some black balls and
some white balls. It allows us to tell how likely it is that a handful of balls picked from the urn contains a
certain number of one color, in comparison with what would be expected just by chance alone if the sampling
were totally random.

Example: GO-term enrichment

In our field, probably the most common application of the hypergeometric distribution is to test whether a
set of genes of interest (e.g. up- or down-regulated genes in a differential gene expression analysis) is enriched
for a specific functional annotation (e.g. GO term).

For example, let’s say we have a list of 59 genes that are predicted to be regulated by the mouse E2F
transcription factor, and we want to know whether they are enriched for genes involved in the cell cycle.
There are 13,588 genes with some GO annotation in the mouse genome, and 611 of them are annotated with
the term “cell cycle”. We find that 19 out of our 59 genes are annotated with the GO term “cell cycle”.

What we want to know is, Is the observed overlap different from what we would expect if we
picked the same number of genes at random from the genome? We can use set theory to figure
this out.

Let’s visualize the problem:

We are interested in whether the probability of the observed overlap between the two gene sets is greater
than (or less than) expected by chance. In terms of set theory, our question becomes:
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Figure 1: Overlap between two sets of genes in the genome

If we pick A genes out of N total genes, what is the chance that x of them would also be
contained in B, if the two sets were independent?

To answer this, we need to know just a few things:

• N : the total number of GO-annotated genes in the genome
• A ∈ N : the number of genes in Set A (e.g. differentially expressed genes)
• B ∈ N : the number of genes in Set B (e.g. genes with a particular GO term)
• x: the overlap between Set A and Set B (A ∩ B)

Note that all of the genes in both sets need to have at least one GO-term associated with them (i.e. A and
B are proper subsets of N).

Null hypothesis

Under the null hypothesis the two gene sets should be independent:

Pr[A ∩ B] = Pr[A] ∗ Pr[B]

What is the expected overlap between the gene sets for this example?

Overlap = 19 # predicted genes with GO term
A = 59 # predicted E2F targets
B = 611 # genes with GO term
N = 13588 # total annotated genes

# Expected overlap based on the null hypothesis:
# [# genes in (A AND B)] = [# genes in A] * [# genes in B] / N

exp.overlap = A * B / N
print(paste("Expected overlap =", round(exp.overlap,2)))

## [1] "Expected overlap = 2.65"

It’s easy to see that more of our E2F targets have something to do with the cell cycle that we would expect
just by chance:
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# Fold-enrichment: OL/(expected OL) = OL/(A*B/N) = (OL/A)/(B/N) = (OL*N)/(A*B)

fold.enrichment = Overlap / exp.overlap
print(paste("Fold-enrichment =", round(fold.enrichment,2)))

## [1] "Fold-enrichment = 7.16"

But how significant is this enrichment? Is this really something we should follow up on in the lab?

Hypergeometric PDF

We can use the hypergeometric distribution to answer this question because it describes exactly our scenario.

Sampling without replacement means that we are picking a particular set of items from a finite set of
total items, so each trial affects the probability of the next outcome. This means that we need an equation
to find the probability of observing x “successes” in a shrinking sample space.

(Note that if the population were infinite, then this would essentially be the same as sampling with
replacement, since the sample would not make a dent in the remaining number of individuals to choose
from.)

The hypergeometric PDF is defined as:

f(x) = P (X = x) =
(

B
x

)(
N−B
A−x

)(
N
A

)
where:

• x is the number of “successful” trials (overlap between A and B)
• N is the total number of selectable items (all annotated genes)
• B is the total number of possible “successful” outcomes (Set B)
• A is the number of items sampled (Set A)

The random variable x represents the intersection of the two sets (A ∩ B). Set A is the sample we are asking
about, and Set B is the group we are comparing against.

The components of the equation are:

•
(

B
x

)
: the number of ways to get (A ∩ B) out of B items

•
(

N−B
A−x

)
: the number of ways to get (A NOT B) out of (N NOT B) items

•
(

N
A

)
: the number of ways to get A out of N items

Hypergeometric CDF

As always, the cumulative distribution gives the total probability P (X ≤ x) and P (X > x). The lower-tail
probability is the probability that fewer than x overlaps are observed (depletion), and the upper-tail
probability is the probability that more than x overlaps are observed (enrichment).
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Figure 2: Graphical representation of the hypergeometric formula

Hypergeometric test in R

The hyper family of functions in R is described in terms of white and black balls contained in an urn, which
is a bit confusing at first!

help(phyper)

# hypergeometric density function in R is defined as:
# p(x) = choose(m, x) choose(n, k-x) / choose(m+n, k)

# where:
# x = # of white balls drawn w/o replacement from an urn
# containing black and white balls (overlap, x)
# m = # of white balls in the urn (Set B)
# ... think of these as "marked" genes
# n = # of black balls in the urn (N - B)
# ... think of these as "non-marked" genes
# k = # of balls drawn from the urn (Set A)

# the command is:
# dhyper(x, m, n, k, lower.tail = T/F)

I think it’s a little easier to think in terms of the overlap between two groups. Three of the above
parameters correspond to Set A (k), Set B (m), and the Overlap between them (x). The other one is simply
everything that is NOT in B, so n = N − B. Using our set notation, the syntax becomes:

# lower tail: overlap less than expected by chance, P(X < X or X = x)
phyper(Overlap, B, N - B, A)

# upper tail: overlap more than expected by chance, P(X > x)
phyper(Overlap, B, N - B, A, lower.tail= FALSE)

Going back to our example, we want to know: Is the list of predicted E2F targets significantly
enriched for the GO term “cell cycle”?
Here we are specifically interested in enrichment, so we want the upper tail probability. Since this is
defined as P (X > x), but we want a probability with x inclusive, we actually need to use P (X ≥ x − 1).

We can get the total probability using pyhper (CDF), or equivalently we can up all the discrete probabilities
using dhyper (PDF):
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# P(enrichment) = upper-tail probability: P(X >= x)
# Note: Since this is a discrete distribution,
# we use Overlap-1, otherwise we are asking for P(X > x)

phyper(Overlap-1, B, N - B, A, lower.tail= FALSE)

## [1] 4.989683e-12

# same using PDF instead
sum(dhyper( Overlap:A, B, N - B, A ))

## [1] 4.989683e-12

Fisher’s Exact Test

The hypergeometric test is the same as a one-tailed Fisher’s exact test:

# set up the contingency table with the overlap in the top left corner
# first row is the # of predicted targets (Set A)
# first column is the # of genes with GO term (Set B)
A.not.B = A-Overlap
B.not.A = B-Overlap
N.not.AB = N - B - A + Overlap # same as: N - B - A.not.B
contingency.table = rbind(c(Overlap, A.not.B),

c(B.not.A, N.not.AB))
rownames(contingency.table) = c("target","not.target")
colnames(contingency.table) = c("cell-cycle","\ \ not.cell-cycle")
contingency.table

## cell-cycle not.cell-cycle
## target 19 40
## not.target 592 12937

# Is the overlap greater than expected by chance?
fisher.test(contingency.table, alternative="greater")

##
## Fisher’s Exact Test for Count Data
##
## data: contingency.table
## p-value = 4.99e-12
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 6.204117 Inf
## sample estimates:
## odds ratio
## 10.37524
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fisher.test(contingency.table, alternative="greater")$p.value

## [1] 4.989683e-12

Since both methods enumerate all possible combinations of outcomes at least as extreme as the observed
overlap, these give exactly the same result.

Fisher’s test gives the added benefit of providing a 95%CI and an odds ratio.

Which test should I use?

Since pyhper or fisher.test give the same p-value, it doesn’t really matter, unless you wish to report
confidence intervals or odds ratios. However, phyper is implemented in a slightly more efficient manner.
You can see this by comparing the execution times of the two commands (though in this case the practical
effect is trivial):

start.time.phyper = Sys.time()
phyper(Overlap-1, B, N - B, A, lower.tail= FALSE)
execution.time.phyper = Sys.time() - start.time.phyper

start.time.fisher = Sys.time()
fisher.test(contingency.table, alternative="greater")
execution.time.fisher = Sys.time() - start.time.fisher

paste("phyper:", execution.time.phyper)

## [1] "phyper: 0.00268793106079102"

paste("Fisher's:", execution.time.fisher)

## [1] "Fisher’s: 0.00391006469726562"

As noted before, if N is really large, exact tests become inefficient. In such cases, you can use approxi-
mate tests such as the Chi-squared test of independence (as long as the number in each cell is at least 5).
Alternatively, you could simulate the null distribution and use that to compute an empirical p-value.

However, with modern computers, Fisher’s works pretty well for datasets up to 5 or 6 figures (and if you
can afford to wait, you can use it on even larger datasets, or contingency tables with more than two rows
and columns.)
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