Exercise: Exponential and Poisson

XDASI Fall 2021

10/21/2021

Example: Lizard mortality

For some animals, like lizards (or hydra), their mortality rate is independent of their age. Over an extended trip to Costa Rica, you studied a large population of lizards and found that their rate of mortality is $\lambda=$ 0.05 deaths per month.

\Rightarrow What is the expected number of deaths per year?

```
# Poisson: E(X) = SD(X) = lambda = 0.05 per month
0.05 * 12
```

\#\# [1] 0.6
\Rightarrow What is the expected lifespan of one of these lizards? (In other words, this is the typical "wait time" until one death occurs?)

```
# Exponential: E(X) = SD(X) = 1/lambda = 20 months
1/0.05
## [1] 20
```

\Rightarrow What is the probability an animal will survive more than 20 months?
Hint:

- This is given by the the exponential survivorship function.

$$
P_{\exp }(X>20)=e^{-0.05 * 20}=0.3679
$$

+ Alternatively, it is given by the lower-tail Poisson probability for $\mu=\lambda * t=0.05 * 20$:

$$
P_{\text {pois }}(X=0)=e^{-\lambda t} \frac{\lambda t^{x}}{x!}=e^{-\mu} \frac{\mu^{x}}{x!}
$$

\# with exponential
$\exp (-0.05 * 20)$ \# manual calculation
\#\# [1] 0.3678794
$\operatorname{pexp}(20$, rate $=0.05$, lower.tail=F) \# with CDF
\#\# [1] 0.3678794
\# with Poisson: need to multiply units out to mu = lambda * $t=0.05 /$ month $* 20$ months $=>1$ new unit

```
mu = 0.05*20 # number of deaths in t=20 months
ppois(0, lambda = mu, lower.tail=T)
## [1] 0.3678794
dpois(0, lambda = mu) # same, since just one value for }
## [1] 0.3678794
```

\Rightarrow What is the probability an animal will survive 20 months or less?
Hint:

- This is given by the lower-tail CDF of the exponential distribution
- This is equivalent to the upper-tail CDF of the Poisson distribution.

$$
P(X \leq 20)=1-e^{-0.05 * 20}=1-0.3679=0.6321
$$

```
1-exp(-0.05*20) # manual calculation
## [1] 0.6321206
pexp(20,0.05) # with CDF
## [1] 0.6321206
ppois(0, lambda = mu, lower.tail=F) # P(no death > 20 months)
## [1] 0.6321206
```


\Rightarrow What is the probability an animal will survive between 10 and 15 months?

Hint:

- To get the total probability across an interval, we subtract the total probability of the lower value from that of the higher value.
- We can't answer this with Poisson, since can only vary \# events (not time)!

$$
P(10 \leq X \leq 15)=\left(1-e^{-0.05 * 15}\right)-\left(1-e^{-0.05 * 10}\right)=e^{-0.05 * 10}-e^{-0.05 * 15}=0.165
$$

```
exp(-0.05*10) - exp(-0.05*15) # manual calculation
## [1] 0.1341641
pexp(15,0.05) - pexp(10,0.05) # with CDF
## [1] 0.1341641
```

