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Review

o Random samples
¢ Standard normal distribution

— What is a z-score?
— What are the quantiles?
— How do you capture height vs. area?

e Sampling distribution of the sample mean

e Standard error

o Confidence intervals

e What is a z-score?

o t-statistics vs. z-statistics : when is each appropriate?
e P values : one- vs. two-sided

o What does qt(0.975) represent?



This worksheet illustrates basic concepts and practical application of significance tests for different experi-
mental scenarios.

Sample data

To illustrate the various types of t-test, we will use a simple case study where a drug was administered to
10 random patients (or test subjects) and its effect was compared to that of a placebo pill. Three different
experimental designs are illustrated:

o Treatment sample vs. control population (one-sample test)
o Two random samples: treatment vs. control (two-sample test)
o One sample measured before and after treatment (paired test)

In all three scenarios, measurements were collected to answer the question:

Is there a significant difference between the control subjects and the those who were given the
drug?

To generate sample data for this exercise, I simulated some normally distributed data for a large control
population and wrote this to a file (placebo_pop.csv). I then drew two random samples from normal
distributions with different means.

# population data

# simulate 1000 samples from a mormal with the same parameters
Placebo_pop = rnorm(1000, mean = 50.482, sd = 2.693)

head (Placebo_pop)

## [1] 54.80884 50.15508 51.52207 53.08221 47.40627 45.99214

H*

write to file
Placebo_pop = data.frame(value = Placebo_pop)
write. table(Placebo_pop, file = "placebo_pop.csv", row.names = FALSE, col.names = FALSE)

H* W

load from file

Placebo_pop = read.table("placebo_pop2.csv", header=FALSE)

Placebo_pop = Placebo_pop[,1] # turns data frame into a simple wvector
head (Placebo_pop)

H W " W

# sample data
Placebo = c(54,51,58,44,55,52,42,47,58,46)
Drug = c(54,73,53,70,73,68,52,65,65,60)

Sample vs. population parameters

Compare the mean and SD of the Placebo population and the Placebo sample. Do these look pretty different?
Why?

## check the parameters from the true population

paste("Pop. mean = ",round(mean(Placebo_pop),3),
" ; Pop. SD = ",round(sd(Placebo_pop),4))

## [1] "Pop. mean = 50.516 ; Pop. SD = 2.6526"

## check the parameters from the estimated population



paste("Sample mean = ",round(mean(Placebo),3),

" ; Sample SD = ",round(sd(Placebo),4))
## [1] "Sample mean = 50.7 ; Sample SD = 5.7164"
paste("Drug sample = ",round(mean(Drug),3),

"; Drug sample = ",round(sd(Drug),4))

## [1] "Drug sample = 63.3 ; Drug sample = 8.111"

Placebo population distribution

Let’s take a look at the “population” and see where the two samples means fall relative to the control
distribution.

## visualize the distribution and sample means

hist(Placebo_pop, 20, FALSE, c(40,65))

xfit = seq(40,65, 100)

yfit = dnorm(xfit, mean (Placebo_pop) ,sd=sd(Placebo_pop))
lines(xfit,yfit, "blue", 2)

abline( mean(Placebo), "blue", 2, 2)

abline( mean (Drug) , "red", 2, 2) # off scale

Histogram of Placebo_pop

ot
S | IZ‘FSY |
[} ]
[} ]
[} ]
S | | |
: [} ]
z ° . .
& I I
CD | |
= 0 | |
o | | [
[} ]
[} ]
[} ]
S | | |
S | | - | | —
40 45 50 55 60 65
Placebo_pop



t-distrubution
Confidence Intervals

The standard error is very helpful because it gives us an idea of how close our data are to the actual mean.
We can use the SE to help define Confidence Intervals (CI) for the the actual population means from
which the samples were drawn.

Here, we assume that we have random samples and that the measurements are normally distributed in
the population. The estimated distribution of the sample means will then follow a t-distribution, which is
similar to a standard normal distribution but with heavier tails. As the sample size increases, the tails of
the t-distribution become smaller and it resembles closely the Z-distribution.

Let’s calculate the 95% CI for the mean of each population that the samples are drawn from. Here are the
steps we need:

1. Use the qt () quantile function to identify the critical t-score, t..;, for the the 95% CI with the
appropriate df.

2. Estimate the mean and SEM for the Placebo and Drug samples.

3. Use these values to compute the 95% CT’s for the two samples.

## t_critical: t-score for 97.5), area (range is from 2.5}, to 97.5})
## also need degrees of freedom for this distribution (length - 1)
##  df = same for Placebo and Drug (9)

# Placebo and Drug are the same length so this works for both df

t_0.975 = qt(p = 0.975, df = length(Placebo)-1) # t-score for 97.5th percentile
paste0("t_crit = ",round(t_0.975,4))

## [1] "t_crit = 2.2622"

# note this is bigger than the corresponding z-score would be
# n_0.975 = gnorm(p = 0.975)
#mn_0.975

# placebo SEM

Pmean = mean(Placebo)
Pse=sd(Placebo)/sqrt(length(Placebo))
Pmean

## [1] 50.7

Pse

## [1] 1.8077

# drug SEM

Dmean = mean(Drug)
Dse=sd(Drug) /sqrt (length(Drug))
Dmean

## [1] 63.3

Dse

## [1] 2.564934

# placebo and drug 95) CI
c(Pmean - Pse * t_0.975, Pmean + Pse * t_0.975)
## [1] 46.6107 54.7893



c(Dmean - Dse * t_0.975, Dmean + Dse * t_0.975)
## [1] 57.49772 69.10228

One-sample t-test

A one-sample t-test compares a sample against expected parameters for a larger population.

The t.test () function in R takes a vector of input data (a sample) and automatically finds the degrees of
freedom for the corresponding t-distribution based on the length of the vector.

Run a one-sample t¢-test for each sample against Placebo_pop. Do the samples look like they both came
from the same parent population?

# Placebo sample

t.test (Placebo, mu=mean(Placebo_pop))

##

## One Sample t-test

##

## data: Placebo

## t = 0.10181, df = 9, p-value = 0.9211
## alternative hypothesis: true mean is not equal to 50.51596
## 95 percent confidence interval:

## 46.6107 54.7893

## sample estimates:

## mean of x

## 50.7

# Drug sample

t.test(Drug, mu=mean(Placebo_pop))

##

## One Sample t-test

##

## data: Drug

## t = 4.9842, df = 9, p-value = 0.0007551
## alternative hypothesis: true mean is not equal to 50.51596
## 95 percent confidence interval:

## 57.49772 69.10228

## sample estimates:

## mean of x

## 63.3

You can inspect the t.test object using str(); it’s a list containing a bunch of information about the results
of the t-test.

Notice that the output of t.test() includes an estimate for the 95% CI. We can check our manual cal-
culations by extracting just the CIs from the function output. The precise expression to get the CI is
t.testO$confint[1:2].

Do this for both the Drug and the Placebo samples. Are these the same as what you calculated above?

# confidence intervals and p-values from t-tests
#str(Pt.test)

t.test(Placebo, mu=mean(Placebo_pop))$conf.int[1:2] # lower and upper CI limits



## [1] 46.6107 54.7893
#t.test (Placebo, mu=mean(Placebo_pop))$conf.int # also indicates 0.95 is the range

t.test(Drug, mu=mean(Placebo_pop))$conf.int[1:2]
## [1] 57.49772 69.10228

t.test(Placebo, mu-mean(Placebo_pop))$p.value
## [1] 0.921142

t.test(Drug, mu=mean(Placebo_pop))$p.value
## [1] 0.0007551348

Two-sample t-test

The null hypothesis is that the samples come from the same population, so their means should be the
same.

H,: KDrug = HPlacebo

HA : ﬂDrug 7é K Placebo

Stripchart

First let’s inspect the two samples by making two strip charts showing the mean and SEM, or the mean
and 95%CI, for the Placebo and Drug samples. Refer to this helpful tutorial on adding different kinds of
summary statistics to ggplot strip charts: https://ggplot2tutor.com/tutorials/summary_ statistics

# make a data frame

drug.placebo = data.frame(Treatment = rep(c("Placebo","Drug"),each=10), # ezperiment with params
Value = c(Placebo, Drug))

# reset levels (alphabetical by default)

drug.placebo$Treatment = factor(drug.placebo$Treatment, levels = c("Placebo","Drug"))

drug.placebo

## Treatment Value

## 1 Placebo 54
## 2 Placebo 51
## 3 Placebo 58
## 4 Placebo 44
## 5 Placebo 55
## 6 Placebo 52
## 7 Placebo 42
## 8 Placebo 47
## 9 Placebo 58
## 10 Placebo 46
## 11 Drug 54
## 12 Drug 73
## 13 Drug 53
## 14 Drug 70
## 15 Drug 73
## 16 Drug 68
## 17 Drug 52
## 18 Drug 65
## 19 Drug 65


https://ggplot2tutor.com/tutorials/summary_statistics

## 20 Drug 60

# basic jitter plot
p = ggplot(drug.placebo, aes(x=Treatment, y=Value)) +
geom_jitter(position=position_jitter(0.1))
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# jitter plot with stats
# error bars, minmazx
# p + stat_summary(geom = "errorbar",
# width = .1,
# fun.min = min,
# fun.maz = maz)

# Std error by hand (not sure if there is a function for this)

p + stat_summary(fun = mean,
geom = "pointrange",
fun.max = function(x) mean(x) + sd(x) / sqrt(length(x)),
fun.min = function(x) mean(x) - sd(x) / sqrt(length(x)),
color="blue")
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# 95JCI with error bars
p + stat_summary(fun.data = "mean_cl_normal",
geom = "errorbar",
width = .05, col="purple") +
stat_summary(fun = "mean", geom = "point", col="purple")
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# 95JCI with pointrange (pointrange is default)

p + stat_summary(fun.data = "mean_cl_normal",
geom = "pointrange",
col="magenta")

Drug
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# 95/CI by hand with pointrange (for comparison)

p + stat_summary(fun = mean,

# geom = "pointrange",
fun.max = function(x) mean(x) + qt(.975, df
fun.min = function(x) mean(x) - qt(.975, df

col="goldenrod")

length(x)) * sd(x) / sqrt(length(x)),
= length(x)) * sd(x) / sqrt(length(x)),

10



70- *
[
«*
60 -
E °
@
>
[ ]
O [
[ ]
° °
50~ *
[
[
°
[ ]
Placebo Drug

Treatment

# 99JCI (if you want to change CI limits)

p + stat_summary(fun.data = "mean_cl_normal",
fun.args = list( conf.int = .99 )) # 99/CI
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#
# other options

# a) std deviation - note default is 2sd,

# p + stat_summary(fun.data = "mean_sdl"
fun.args = list(

mult

s

color="red")

1

*

# b) std dev with error bars
p + stat_summary(fun.data = "mean_sdl"”,
geom = "errorbar",
width = .05, col="purple
fun.args = list( mult
stat_summary (fun "mean", geom = "po

# c) std deviation by hand, with point

p + stat_summary (fun
geom = "pointrange",
fun.maz = function(z) me
fun.min = function(z) me
color="hotpink")

= mean,

FHOH O RO W RO W R OW R RE R

H*

# c) bozplot with jitterplot overlaid

need multiplier = 1

El

1))+
wnt"”, col="purple")
range

an(z) + sd(z),
an(z) - sd(z),
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# ggplot(drug.placebo, aes(z=Treatment, y=Value)) +
# geom_boxzplot() +
# geom_gjitter(position=position_jitter(0.2))

Using the rules of thumb given in your textbook, can you conclude by eye from the 95%CI that the samples
come from different populations? Why or why not?

# probably very significant b/c CI's do not overlap

Difference in sample means

Another way to frame H, is to say that we expect the difference between the two sample means to
be 0. We know this because if we were to plot a distribution of random variables with the same mean, we
would expect to get a mean difference of 0. This is the null hypothesis for a two-sample t-test.

H,: HDrug — HPlacebo = 0

HA * MDrug — MPlacebo 7é 0

The difference in sample means is normally distributed

We already know that the sampling distribution of the sample mean is normally distributed, and
that the sum or difference of two normally distributed variables is also normally distributed. Therefore, the
difference in sample means must also be normally distributed.

Now let’s consider the Placebo and Drug samples to be two separate “populations” If we repeatedly take
two random samples from these, we can determine (with 95% confidence) what is the actual difference in
the means of the populations.

Let’s check this for ourselves by repeatedly taking two smaller samples from the Placebo and Drug samples
and plotting the differenc between them:

Diff_sample = numeric()

n=>5
for (i in 1:10000) {
Diff_sample[i] = mean(Drug[sample(l:length(Drug), n, 1) -
mean (Placebo[sample(1:length(Placebo) ,n, ™1
}

hist(Diff_sample)

13



Histogram of Diff_sample
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Standard vs. Welch’s t-test
Since we expect that we have random samples drawn from a normal distribution, and our samples are pretty
small, it is valid to use t-statistics to test our null hypothesis.

The t-score for the observed difference in the means is computed in the same way as the z- or t-score
for a normal distribution: it is simply the mean difference standardized by the standard error:

(-
Sl?yi_§3

For independent samples, we have two choices of t-test: Welch’s approximate t-test (for unequal
variances) or a standard ¢-test (which assumes equal variances). These differ slightly in the formulas they
use for the degrees of freedom and the variance, which is used to compute the standard error.

Below, compare the two variations of the t-test.

# perform two versions of a 2-sample test using R

t.test(Drug, Placebo, T) # equal wvariances
##

## Two Sample t-test

##

## data: Drug and Placebo

## t = 4.0154, df = 18, p-value = 0.0008116

## alternative hypothesis: true difference in means is not equal to 0O
## 95 percent confidence interval:

14



##  6.007433 19.192567
## sample estimates:
## mean of x mean of y

## 63.3 50.7

t.test(Drug, Placebo, var.equal = F) # Welch (unequal wvariances)
##

## Welch Two Sample t-test

##

## data: Drug and Placebo

## t = 4.0154, df = 16.171, p-value = 0.0009803

## alternative hypothesis: true difference in means is not equal to 0O
## 95 percent confidence interval:

##  5.95359 19.24641

## sample estimates:

## mean of x mean of y

## 63.3 50.7

How do the results compare?

# The df and consequently the p-value differ slightly for Welch's t-test.
# The confidence interval does not span 0, consistent with the p-value —-- both indicate that it is extr

What is similar and what is different about these results in comparison with the one-sample tests above?

# the means of the two samples and the conclusions from the tests are the same.
# the df and the t-score and p-values are not exzactly the same since we are comparing the difference be

In practice, it is generally preferred to use Welch’s t-test since it has similar power (we will talk about this
soon), and it is more robust to differences in variance and sample size.

Paired ¢-test

What if the data are taken from the same individuals? For example, we could test the same patients
before and after treatment. In this kind of experimental design, we say that the data are paired. If there is
no difference between the two measurements for each individual — for example, a new drug for blood pressure
has no measurable benefit — then we would expect that our before and after values would be about the same
on average.

The paired t-test is performed in the same way as the one-sample ¢-test, except we use the mean difference
between paired measurements from the two samples, X p, to compute a test statistic. This is a nice design
because it controls for inter-individual variation, however it is not appropriate when the two samples are
truly independent.

Null hypothesis

Our null hypothesis is usually that the mean paired difference, D,, is zero (we could set it to something
else if our null hypothesis is that the difference between them is something else ... ).

For paired data, we assume that the two sets of measurements are arranged in the same order
as the corresponding individuals (because we have good record-keeping practices!) The test statistic is:

:XD_DO:XD_DOZ@(XD—D)
%%f Slﬂ) SD 0

t*
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where

e Xp is the mean of the pairwise differences,
e sp is the standard deviation of the pairwise differences, and
o Dy is what we are testing (i.e. the expectation for the null hypothesis, which in this case is 0).

Test statistic and p-value

To compute this t-statistic, we can simply subtract one vector from the other to obtain pair-wise differences
for each individual, take the mean, and divide by the standard error. We then find the p value in the usual
way.

First, find the t-statistic and the p-value by hand. Then, perform a paired t-test for the difference between
the two samples.

# paired difference between samples
pair_diff = Drug-Placebo

# t-score and p-value by hand

se_diff = sd(pair_diff)/sqrt(length(pair_diff))
t_stat = mean(pair_diff)/se_diff

t_stat

## [1] 4.108696

2xpt (t_stat, df=9, lower.tail = F)

## [1] 0.002642154

# paired t-test: t.test(treatment, control, ...)
t.test(Drug, Placebo, paired = T, var.equal = T)
##

## Paired t-test

##

## data: Drug and Placebo

## t = 4.1087, df = 9, p-value = 0.002642

## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## 5.662718 19.537282

## sample estimates:

## mean of the differences

## 12.6

Relationship between one-sample and paired-sample tests
Study the above equation to convince yourself that the form of the t-statistic for a paired test is the same
as that for a one-sample t-test, substituting Xp for X, D, for u,, and sp for s.

It is important to note that the result from the one-sample ¢-test using the paired differences between
the two samples gives the same result as a two-sample ¢-test with the paired option!

Use the t.test () function to perform a one-sample test that compares the paired difference vector against

the expected mean difference, and then perform a paired ¢-test to verify that the two methods are equivalent.

# one-sample test: sample diff vs. Ezp(mu) = O
t.test(pair_diff, mu=0)
##

16



## One Sample t-test

##

## data: pair_diff

## t = 4.1087, df = 9, p-value = 0.002642

## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:

## 5.662718 19.537282

## sample estimates:

## mean of x

## 12.6

# paired t-test: t.test(treatment, control, ...)
t.test(Drug, Placebo, paired = T, var.equal = T)
##

## Paired t-test

##

## data: Drug and Placebo

## t = 4.1087, df = 9, p-value = 0.002642

## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## 5.662718 19.537282

## sample estimates:

## mean of the differences

## 12.6

Note: when performing any t-test with two samples, you must specify the test set first, and the control
set second — otherwise you get a t-score that is on the opposite side of the distribution. This will not
change your p-value, however your confidence interval will have the wrong sign!!!
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