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Is it ok to perform a t-test on my data?

So far we have used t-tests to compare two samples. These depend on the assumption that data are normally
distributed. How do we know if this is the case?

Let’s return to our simple case study where a drug has been provided to 10 random patients (test subjects)
and, as a control, a placebo pill was given to 10 other random patients. Measurements were collected for
each condition and the question is:

Is there a significant difference between the subjects who were given the placebo and the those
who were given the drug?

Let’s first look at all the data together as a population. We will combine the values and draw a simple
histogram.
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Placebo = c(54,51,58,44,55,52,42,47,58,46)
Drug = c(54,73,53,70,73,68,52,65,65,60)

Data = c(Placebo, Drug)
Data_sd = sd(Data)
Data_mean = mean(Data)
hist(Data, breaks=10)

Histogram of Data
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Do these data look “sufficiently normal” to perform regular parametric tests on them? How can we tell?

Quantile-Quantile plots

Normal QQ plot

We can check graphically to see how well an observed set of values matches a theoretical normal distribution
using the qqnorm and qqline functions.

The theoretical distribution is generated using the same number of datapoints as the sample data, but
distributed evenly across probability quantiles for a standard normal distribution. The corresponding z-
scores are then plotted against the sample data.

The closer the observed data points fall on the “ideal” line, the more closely they resemble normally dis-
tributed data. Of course, due to sampling variation, the actual data will usually not fall exactly on the line,
but random samples drawn from a normal distribution should follow the line at least approximately.
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qqnorm(Data)
qqline(Data)
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More general QQ plot

A more generic function is qqplot function, which can be used to compare data to theoretical values based
on any distribution we want. To make such a plot requires a few steps:

ppoints The ppoints function takes the number of values you want, which should match the length of
the dataset you want to test. The function returns the same number of equally spaced quantiles for the
cumulative probability between 0 and 1.

We can then use the qnorm function to get the predicted z-scores of the theoretical normal distribution for
the corresponding quantiles.

my_probs = ppoints(length(Data))
my_probs

## [1] 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575
## [13] 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975

my_quant = qnorm(my_probs)
my_quant
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## [1] -1.95996398 -1.43953147 -1.15034938 -0.93458929 -0.75541503 -0.59776013
## [7] -0.45376219 -0.31863936 -0.18911843 -0.06270678 0.06270678 0.18911843
## [13] 0.31863936 0.45376219 0.59776013 0.75541503 0.93458929 1.15034938
## [19] 1.43953147 1.95996398

quantile Now to plot the corresponding values from the observed data distribution, we can use the
quantile function.

In addition to the sample data, the quantile function also takes the (evenly spaced) cumulative probabilites
that we have stored in my_probs, which it will use to infer values based on the observed data.

data_quant = quantile(Data, my_probs)
data_quant

## 2.5% 7.5% 12.5% 17.5% 22.5% 27.5% 32.5% 37.5% 42.5% 47.5% 52.5%
## 42.950 44.850 46.375 48.300 51.275 52.000 52.175 53.125 54.000 54.025 54.975
## 57.5% 62.5% 67.5% 72.5% 77.5% 82.5% 87.5% 92.5% 97.5%
## 57.775 58.000 59.650 63.875 65.000 67.025 69.250 71.725 73.000

qqplot When we now plot these against each other, we get a very similar plot to what we saw with qqnorm,
except now we are using imputed values based on the input data.

Again, values based on the observed data are plotted on the y-axis, and normalized values for the the
theoretical data are plotted on the x-axis.

For normally distributed data, qqnorm and qqplot should give very similar results (though they will usually
not be exactly the same since qqnorm goes through an extra imputation step). Both are shown below for
easier comparison.

par(mfrow = c(1,2))

## qqnorm plot
qqnorm(Data)
qqline(Data)

## qqplot plot
qqplot(my_quant, data_quant,

xlab="Theoretical quantiles", ylab="Quantiles inferred from data",
main="General Q-Q Plot")

qqline(Data)
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Shapiro test for normality

The Shapiro test performs a goodness of fit test using the mean and standard deviation of the data. The
null hypothesis is that the data are normally distributed.

shapiro.test(Data)

##
## Shapiro-Wilk normality test
##
## data: Data
## W = 0.95068, p-value = 0.3775

Data transformation

In our example, there is not enough evidence to reject the Ho that the data is normally distributed. So let’s
look at a different dataset. The R dataset trees provides Girth, Height, and Volume of different Black
Cherry Trees. Let’s look at the histogram of the volume data:

hist(trees$Volume)
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Histogram of trees$Volume
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Hm. This dataset doesn’t look like it is normally distributed. Performing a shapiro.test confirms this.

shapiro.test(trees$Volume)

##
## Shapiro-Wilk normality test
##
## data: trees$Volume
## W = 0.88757, p-value = 0.003579

And the QQ plot:

qqnorm(trees$Volume)
qqline(trees$Volume)
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We can see from the Shapiro test and the QQplot that these data don’t seem to fit a normal distribution.
In a QQplot, this is usually quite obvious because parts of the data veer pretty far off from the ideal line.

When the data do not look to be sufficiently normal, we can try performing tests on data that have been
transformed in such a way that they look more normal, so that parametric tests may be performed on
them. Some functions that can accomplish this include the log(), sqrt(), or arcsin(). The log and
square-root transformations are the most common.

Any transformation that accomplishes the goal is ok, as long as you back-transform at the end in order to
report statistics such as 95% confidence intervals (see Plasma Triglycerides example below).

Example: Trees

In biology it is common that multiple factors influence our measurements. The effects may be additive or
multiplicative. We know from probability theory that to find the cumulative probability of several indepen-
dent variables, we can multiply them (product rule). This type of data often gives rise to log-distributed
measurements. Taking the log of these stretches out the small values and compresses the larger ones, ren-
dering the data more normal-looking.

Many examples follow a log-normal distribution, such as exponential growth (cell count doubles with each
division), systolic blood presssure, and the latency period for infectious diseases.

How does the trees dataset look when we transform it using the log or sqrt functions?

par(mfrow=c(1,2))

qqnorm(log(trees$Volume))
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qqline(log(trees$Volume))

qqnorm(sqrt(trees$Volume))
qqline(sqrt(trees$Volume))

−2 −1 0 1 2

2.
5

3.
0

3.
5

4.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

3
4

5
6

7
8

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

How do these transformations stand up in a test for normality?

shapiro.test(log(trees$Volume))

##
## Shapiro-Wilk normality test
##
## data: log(trees$Volume)
## W = 0.96427, p-value = 0.3766

shapiro.test(sqrt(trees$Volume))

##
## Shapiro-Wilk normality test
##
## data: sqrt(trees$Volume)
## W = 0.94105, p-value = 0.08825

The log transformation looks promising (and a lot better than the sqrt transform). It’s not perfect, but
certainly closer to normality than the original data, and suitable for proceeding with statistical methods
that require normally distributed data.
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Example: Plasma triglyceride levels

Let’s investigate the dataset below, containing measurements for plasma triglyceride levels in test subjects
before and after changes in their diet and exercise programs. If there is any significant difference, we expect
to see a decrease in triglyceride levels with these lifestyle changes.

We will use the following methods to examine the data:

• histograms
• QQ plots
• Shapiro-Wilk test for normality
• a t.test() on the transformed data
• the 95% CI for the data in their original units

– we can compute by hand (hard), or extract from t.test()$conf.int[1:2] (easy)
– don’t forget to back-transform using exp()

#####################################################################
# plasma triglyceride levels in the population (mg/ml)
# borderline high = 2-4 vs. normal < 2
# testing before and after diet and exercise changes (expect a decrease)
pre = c(2.55,3.38,2.37,4.11,3.27,2.58,4.20,3.22,5.10,2.62,3.06,1.23,2.27,2.24,1.39,2.63,2.61,4.30,1.46,3.35,2.79,2.42,4.63,1.57)
post = c(1.59,3.51,1.44,2.32,1.75,1.67,1.90,1.37,2.72,1.80,2.40,2.01,2.41,1.38,1.18,4.31,2.09,2.32,2.63,2.25,1.71,2.01,1.95,3.46)
#####################################################################

Histograms and QQ plots

Let’s take a quick look at the original and log-transformed data:

Note: By default, the log() function in R uses the natural log. You can specify other bases with the base
parameter; convenience functions such as log10() and log2() are also available.

# check distributions of original data with histograms (breaks = 10)
par(mfrow=c(2,2))
hist(pre,breaks=10)
hist(post,breaks=10)

# check distributions after log-transformation
hist(log(pre),breaks=10)
hist(log(post),breaks=10)

9



Histogram of pre

pre

F
re

qu
en

cy

1 2 3 4 5

0
2

4
6

Histogram of post

post

F
re

qu
en

cy

1.0 2.0 3.0 4.0

0
4

8

Histogram of log(pre)
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Histogram of log(post)
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par(mfrow=c(2,2))
qqnorm(pre)
qqline(pre)

qqnorm(post)
qqline(post)

qqnorm(log(pre))
qqline(log(pre))

qqnorm(log(post))
qqline(log(post))
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Shapiro-Wilk test for normality

Do these samples look approximately normally distributed?

# Shapiro-Wilk tests
shapiro.test(pre)

##
## Shapiro-Wilk normality test
##
## data: pre
## W = 0.95695, p-value = 0.3802

shapiro.test(post)

##
## Shapiro-Wilk normality test
##
## data: post
## W = 0.89421, p-value = 0.01626

# Shapiro-Wilk tests
shapiro.test(log(pre))
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##
## Shapiro-Wilk normality test
##
## data: log(pre)
## W = 0.95163, p-value = 0.2938

shapiro.test(log(post))

##
## Shapiro-Wilk normality test
##
## data: log(post)
## W = 0.97437, p-value = 0.7742

What do you conclude from inspection of the normality of the data?

# the "post" data are not normally distributed
# log transformation makes it more normal, but the "pre" group gets a bit worse

# however according to the Shapiro-Wilk test, both are within acceptable limits
# for continuing on with a t-test on the log-transformed data

t-tests

Let’s compare the results of t-tests using the original and the transformed data.

## do t-tests using the original and transformed data
t.test(post,pre,paired=T)
##
## Paired t-test
##
## data: post and pre
## t = -2.8642, df = 23, p-value = 0.008771
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.2321311 -0.1987022
## sample estimates:
## mean of the differences
## -0.7154167
t.test(log(post),log(pre),paired=T)
##
## Paired t-test
##
## data: log(post) and log(pre)
## t = -2.8498, df = 23, p-value = 0.009067
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.46464693 -0.07379456
## sample estimates:
## mean of the differences
## -0.2692207
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What are the most striking differences in the results of the t-tests? Which t-test is more appropriate, and
why?

# results are actually similar, though of course the t-stats, CIs, and mean differences
# are not the same

# the transformed test is more correct based on normality tests above

95% confidence intervals

Compute the 95% CI for the post-treatment and pre-treatment samples using the log-transformed data.

Manual calculations First, do these “by hand” using the formulas you know for the 95%CI (don’t forget
to back-transform into the original units!).

# ============================================================================ #
# pre-treatment -- by hand!

# compute standard error
mean_prime = mean(log(pre))
sd_prime = sqrt( sum( (log(pre) - mean_prime)ˆ2 /(length(pre)-1)) )
se_prime = sd_prime/sqrt(length(pre))

# get t-critical
tcrit = qt(0.975,df=length(pre))
tcrit
## [1] 2.063899

# CI in log units
ci_pre = c(mean_prime - tcrit*se_prime, mean_prime + tcrit*se_prime)
ci_pre
## [1] 0.8365772 1.1556327

# CI in original units
ci_pre_orig = exp(ci_pre)
ci_pre_orig
## [1] 2.308452 3.176032

# ============================================================================ #
# 95%CI post-treatment -- by hand!
mean_prime = mean(log(post))
sd_prime = sqrt( sum( (log(post) - mean_prime)ˆ2 /(length(post)-1)) )
se_prime = sd_prime/sqrt(length(post))
tcrit = qt(0.975,df=length(post))
tcrit
## [1] 2.063899

ci_post = c(mean_prime - tcrit*se_prime, mean_prime + tcrit*se_prime)
ci_post
## [1] 0.5940810 0.8596873
ci_post_orig = exp(ci_post)
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ci_post_orig
## [1] 1.811366 2.362422

Extracted from t-test output Now use the CI values from one-sample t-tests to get both of these
automatically (again, don’t forget to back-transform!) To get these, simply perform 1-sample tests for each
group against a group mean.
(Note: these tests should not be used for computing p-values, but the CI for each group is given in the
output.)

# ============================================================================ #
# 95%CI pre-treatment from t-test
t_pre = t.test(log(pre),mu=mean(log(pre)))
t_pre

##
## One Sample t-test
##
## data: log(pre)
## t = 0, df = 23, p-value = 1
## alternative hypothesis: true mean is not equal to 0.9961049
## 95 percent confidence interval:
## 0.8362093 1.1560005
## sample estimates:
## mean of x
## 0.9961049

ci95_pre_log = t_pre$conf.int[1:2]
ci95_pre_log

## [1] 0.8362093 1.1560005

ci95_pre = exp(ci95_pre_log)
ci95_pre

## [1] 2.307603 3.177201

# ============================================================================ #
# 95%CI post-treatment from t-test
t_post = t.test(log(post),mu=mean(log(pre)))
t_post

##
## One Sample t-test
##
## data: log(post)
## t = -4.184, df = 23, p-value = 0.000356
## alternative hypothesis: true mean is not equal to 0.9961049
## 95 percent confidence interval:
## 0.5937748 0.8599936
## sample estimates:
## mean of x
## 0.7268842
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ci95_post_log = t_post$conf.int[1:2]
ci95_post = exp(ci95_post_log)
ci95_post_log

## [1] 0.5937748 0.8599936

ci95_post

## [1] 1.810811 2.363145

Did you get the same CI for the post-treatment sample when computing by hand and using the t.test()?
What can you conclude from the 95% CI’s of the two samples?

# yes, the CIs are exactly the same whether computed by hand or extracted from a t-test.

# the CI's for the two samples barely overlap so the groups are most likely significantly different. The p-value for the paired two-sample test performed previously confirmed this.
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