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ANOVA

ANOVA and related non-parametric methods allow us to compare differences in a quantitative variable
between categorical groups. Using the sums-of-squares method, we saw that we can partition the total
variation among and between groups, as shown in W&S Fig, 15.1-2:

Figure 1: W&S Fig. 15.1-2: Partitioning the total variation

For any individual data point, we can separate its distance from the overall mean into two parts: its distance
to its own group mean, and the distance from its group mean to the overall mean.

(Yij − Ȳ ) = (Yij − Ȳj) + (Ȳj − Ȳ )
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where

• Ȳ is the overall mean,
• Ȳj is the mean of group j, for j ∈ {1..m} and m is the number of groups
• Yij is the value of data point j in group i, for i ∈ {1..nj} and nj is the number of data points in group

j.

It’s easy to see that the group terms on the right (Ȳj) cancel each other out.

Sums of Squares

To get the total variation in the data, we just sum up all the squared differences from every data point to
the grand mean. Similarly, we can sum up the the squared differences from each data point to its individual
group mean, and the squared differences between the group means and the total mean:

n∑
i=1

m∑
j=1

(yij − Ȳ )2 =
n∑

i=1

m∑
j=1

(yij − Ȳj)2 +
m∑

j=1
nj(Ȳj − Ȳ )2

SStotal = SSerror + SSgroup

Mean Squared Error

Recall that the variance of a random sample is defined as s2 =
∑

(yi−Ȳ )2

n−1 , where the degrees of freedom
are df = n − 1.

So, the variance is essentially the mean sum of squares of a random variable. More generally, we can
write MSS = SS

df . For ANOVA with m groups, we can write:

MSgroup = SSgroup

dfgroup
=

∑
j nj(Ȳj − Ȳ )2

m − 1

MSerror = SSerror

dferror
=

∑
i

∑
j(yij − Ȳj)2

N − m

where N is the total number of points, N =
∑

j nj , and m is the number of groups.

F-statistic

The F-ratio is the ratio of the between-group variance to the within-group variance:

F = MSgroup

MSerror
= SSgroup/dfgroup

SSerror/dferror

If there is no difference between the groups, then F = 1; otherwise, F > 1, and the upper-tail probability
determines how significant the differences between groups are.

The critical value for the F-statistic is determined by the allowable Type I error rate, α (usually α = 0.05),
and the degrees of freedom for SSgroup and SSerror:

Fcrit = F(1−α),(m−1),(N−m)
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Interestingly, when there are only two groups, and so df = 1, the F-statistic is the same as the square of the
2-sample t-statistic: F = t2. This may seem a little weird, but just take my word for it. Recently someone
posted a proof of this on their blog, which you can read if you want! 1

R-squared

R2 is the amount of variation in the data that is explained by the groups, i.e. the proportion of the
total variation that is due to variation between groups:

R2 = SSgroup

SStotal

R2 ranges from 0 ≤ R2 ≤ 1.

• If the groups are all drawn from the same population, then almost none of the total variation will be
due to differences between groups, so R2 will be close to zero.

• On the other hand, if the groups are very different, then R2 will be close to 1, since the differences
between groups will account for almost all of the variation in the dataset.

Nonparametric alternatives to ANOVA

ANOVA assumes that the data are normally distributed and that they have approximately equal variances.
When these are not met, other options are available:

• Kruskal-Wallace test
• pairwise Wilcoxon Rank Sum test using adjusted p-values for multiple hypothesis testing; most

commonly these are

– Bonferroni (which controls for the family-wise error, FWR) and is the most conservative
– Benjamini-Hochberg (which controls for the false discovery rate, FDR)

Measures of Association

To measure the strength of association between two quantitative variables, we have seen that we can use
the covariance, or the more useful linear correlation coefficient.

Covariance

The covariance can easily tell us if there is a positive, negative, or no association between two variables. It
is defined as:

Cov(X, Y ) =
∑

(xi − X̄)(yi − Ȳ )
n − 1

Again, notice that this equation has exactly the same form as that for the variance of a single variable:
s2 =

∑
(xi−X̄)(xi−X̄)

n−1 ! Cool. So now we’ve seen that the mean squared error and the covariance both
have the same form as the variance! Keep this in mind for later.

The drawback of the covariance is that it is not so easy to interpret:
1https://canovasjm.netlify.app/2018/10/29/when-does-the-f-test-reduce-to-t-test/
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• it is not bounded, i.e. it ranges from −∞ to +∞
• it varies with sample size
• it changes with scale, even when the underlying relationship is the same (e.g. X ranging from 0-20

vs. 0-40)

Correlation

To solve these problems, we can simply normalize the covariance by the variance of the individual variables.
This is called the linear correlation coefficient, r :

r = Cov(X, Y )√
V ar(X)

√
V ar(Y )

= Cov(X, Y )
sXsY

The correlation coefficient r is easier to interpret because has the following advantages:

• its range is bounded: −1 ≤ r ≤ 1
• it is unaffected by the scale of the data

r quantifies the strength of a linear relationship between two variables. A single variable is perfectly
correlated with itself, so Cor(X, X) = 1. When two variables are completely uncorrelated, r = 0 (warning:
the reverse is not true, e.g. y = x2!)

One caveat to be aware of is that r may differ depending on the range of the data analyzed. This is
illustrated in W&S Fig. 16.4-1, which shows that computing r over just a small portion of the available data
does not reveal the same correlation.

Our confidence in the significance of any non-zero correlation depends on the value of r , coupled with the
amount of data. For example, any two points will have a correlation of 1, but that’s not very significant!
On the other hand, the chance of being able to draw a straight line through 3 random points is very low.

The p-value for r quantifies the probability that some number of random data points will show a certain
correlation, and it depends only on the value of r and the number of data points. It is calculated in the
usual way following a t-distribution, using the test statistic

t = r

SEr
, where SEr =

√
1 − r2

n − 2

The higher the r, and the more data we have, the better confidence we can have in our ability to make
inferences about our data. This means that for the same r, the dataset with a lot more data points will
have a lower p-value. On the other hand, a low r could have a significant p-value and still have very low
predictive value due to the large amount of variation in the data.

To get a feel for r, check out this fun online demo from the W&S online companion site.

R-squared

One problem with r is that it’s not so easy to compare two different r values. Is r = 0.8 twice as good as
r = 0.4? Well, it’s not really that clear.

However, something interesting happens if we take the square of r:

r2 = Cov(X, Y )2

V ar(X)V ar(Y ) = R2
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Now we have a new variable, R2, that ranges from 0 ≤ R2 ≤ 1. So, it does not contain any information
about the direction of the relationship.

However, R2 is great because it measures the amount of variation that’s due to the association between
two variables, relative to their individual variation. It has a formal name, which is the coefficient of
determination. To help you remember the proper name, just ask the question, “How much of the variation
is determined by the relationship between variables?”

Unlike r, R2 can be used to directly compare two different sets of data. For example, an R2 = 0.5 means
that the association between variables explains 50% of the total variation in the data, whereas R2 = 0.25
explains 25% of the variation in the data. So, the amount of variation explained by the association between
X and Y in the first dataset is two times that for the second dataset.

Although it can be formulated in different ways, R2 represents the same idea whether we are looking at
variation between groups in ANOVA, or association between two (or more) quantitative variables: it is the
fraction of the total variance that is explained by the association between variables, relative to
the total variance.

We will revisit R2 again from a slightly different perspective as related to least squares linear regression.

Note: r2 only quantifies the association betwen two variables, whereas R2 is a more general measure that
can be applied to any number of variables. They are only the same in the special case of two variables.

Spearman’s Rank Correlation

When the data do not follow a bivariate normal distribution (such as when the variation in Y varies with
X, or there are outliers, or there is a nonlinear relationship), then other approaches must be used to test for
correlation between two quantitative variables.

The same options exist as for univariate data: try transforming the data to make it look more normal, or
use a rank-based test. Spearman’s Rank Correlation computes a correlation using the ranks of the data,
called rS , and signficance is calculated using a t-statistic in the usual manner.
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