
Visualization with t-SNE
Kris Gunsalus

9/26/2018

Contents
t-distributed Stochastic Neighbor Embedding (t-SNE) 1

Some terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
An overview of the t-SNE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Distance in low-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Perplexity: optimizing the variance of each point . . . . . . . . . . . . . . . . . . . . . . . . . 4
Barnes-Hut approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A physical analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A word of caution, and some tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Suggested Reading 7

Further notes on t-SNE 7

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a non-linear method for visualizing structure in high-dimensional datasets that has been popularized
by single-cell sequencing studies. In contrast to PCA, which is a linear method that seeks to preserve global
structure, t-SNE aims to preserve local structure. t-SNE is often used in combination with PCA, and
can be used to enhance the visualization of structure present in PC-PC plots. Here is an example from one of
the papers we will study this semester (Figure 1).

The mathematics behind t-SNE are a bit complicated and are beyond the scope of this review. Here we seek
to get a general feel for this method. Its primary goal is to map nearby points in the original high-dimensional
data to nearby points in a two- or three-dimensional representation.

Figure 1: t-SNE of single-cell data from an L2 worm (Cao et al., 2017)
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The structure of many complex topological spaces, such as the famous “Swiss roll”, can be reasonably
represented using non-linear methods but not linear methods such as PCA. If the original features are related
by complex polynomials, PCA will not work well.

Some terminology

• Non-linear dimensional reduction is also called manifold learning. A non-linear topological space is
called a manifold and has the property of resembling Euclidian space in the vicinity of each point.

• The low-dimensional space is called a projection or a map of the original manifold.

An overview of the t-SNE algorithm

Distance in high-dimensional space

• Calculate pair-wise distances between data points xi and xj in the original dataset.
• Compute a pairwise conditional probability between data points, pi|j , relative to each datapoint xi.
• The values of pi|j are proportional to their probability density under a Gaussian (normal distribution)

centered at xi. This means that points nearby to xi will get assigned a high probability, and those far
away will get a really low one.

• The joint probability pij is the average of the reciprocal conditional probabilities. This is called
symmetrized conditional similarity.

Distance in low-dimensional space

• The lower-dimensional map aims to preserve the structure of the higher-dimensional space using a
smooth transformation of these probabilities.

• Instead of using a Gaussian, the distances in the lower-dimensional space are modeled using a Student’s
t-distribution with one degree of freedom (a.k.a. a Cauchy Distribution).

• Since the t-distribution has heavier tails than a Gaussian, this serves to separate points from dense
regions in the mapped space, preventing nearby points from collapsing together.

The O’Reilly tutorial listed below encourages the reader to think about the motivation for the t-distribution
by visualizing a sphere in multiple dimensions. If random points are picked within the sphere, then most of
them will be near the surface, as illustrated in Figure 2. The proportion of points near the surface increases
with dimensionality, compressing most of the data toward it. The t-distribution compensates for this by
stretching the distribution out more, which alleviates crowding.

Optimization

• The algorithm seeks to preserve the local structure of the original data, that is to minimize the mismatch
between pi|j and qi|j

• It does this by minimizing a cost function that measures something called the relative entropy, or
cross-entropy, between the two probability distributions.

• An optimization procedure called gradient descent is used to minimize the cost function.
• Note that mapping nearby points so that they end up far apart is heavily penalized, whereas mapping

distant points so that they end up close together carries a much smaller penalty.

The mapped space goes through several iterations as the optimization proceeds. Mapped points start out
really close together, and then the graph relaxes as the distributions are recalculated. Figure 3 shows the
evolution of a set of data containing 10 natural clusters.
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Figure 2: Distribution of random points in n-dimensional spheres

Figure 3: Cluster evolution
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Figure 4: Dynamic spring layout of clustered points

Perplexity: optimizing the variance of each point

• Each point xi in the high-dimensional space has its own variance, σ2
i .

• Points in dense areas get a smaller variance than those in sparse areas.
• The variance of each point induces a probability distribution Pi across all other points whose entropy is

proportional to the variance.
• The algorithm searches for a value of σ2

i that produces a Pi with a fixed perplexity.
• van der Maaten says that perplexity can be interpreted as a smooth measure of the effective number of

neighbors.
• Perplexity is a measure of entropy and is a parameter that is defined by the user. It is the same for all

data points.

Barnes-Hut approximation

The original algorithm is very costly in computational time that is proportional to the square of the number
of data points. We say that it runs on an “order” of n squared, which we write using “Big O” notation
as: O(n2). An implementation using the Barnes-Hut approximation greatly speeds up the processing time,
allowing it to be run on very large real-world datasets.

Barnes-Hut speeds up the calculations by dividing the space into small cells for nearby points (giving high
resolution for short distances) and placing far away points by very large cells, allowing them to be treated as
a single point centered on the cell’s center of mass. Barnes-Hut runs in O(nlog(n)).

A physical analogy 1

You can think of the map as a dynamic graph composed of nodes connected by springs. If the mapped points
get too close together, the springs push them apart. Similarly, points can’t get too far from each other either,
since the springs will pull them back. The length of the spring is propotional to the distance between points
in the low-dimensional space. The stiffness of the spring is proportional to the mismatch in the conditional
probabilities between the points. This image is from an animation you can find in the O’Reilly tutorial listed
at the end of these notes.

A word of caution, and some tips

• Beware! Successive runs on the same data will not necessarily give similar results!
1From https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

4

https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm


Figure 5: Varying perplexity

Figure 6: Varying iterations

• The perplexity, a measure of entropy that is used to find the right values of σ2
i , is a tunable paramater

that can give wildly different results.

• The perplexity must be optimized empirically; the original t-SNE paper gives a range of 5-50 as a
good rule of thumb, but beware that you may need to experiment with the tuning to find a “good”
visualization for your data (refer to “A cautionary tale” below).

• The perplexity should always be smaller than the total number of points.

• Because t-SNE uses and adaptive distance measure that depends on the local density of points, distances
will be distorted. So you can’t interpret the magnitude of distances that you see in a t-SNE plot as
meaningful.

• This means that the apparent size of clusters in t-SNE, relative sizes, and distances between clusters,
are not meaningful.

• Running enough iterations to reach a stable configuration is important.

Examples

Figures 5-9 show theoretical examples from one of the tutorials referenced below (see “A cautionary tale”),
chosen to illustrate how results may vary depending on different properties of the original dataset and different
settings used when running the algorithm.

• Effect of changing the perplexity parameter
• Effect of increasing number of iterations
• Effect of starting clusters with different sizes
• Effect of starting clusters separated by different distances
• Relationship between perplexity and number of data points
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Figure 7: Varying cluster size

Figure 8: Varying cluster distance

Figure 9: Perplexity versus data points (compare with last set of images above)
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Summary

Dimensional reduction methods are really useful for visualizing complex data in just two or three dimensions.
Different methods have different strengths and drawbacks, and it will take you some time to get an intuitive
understanding of their utility and their behavior.

PCA is a well-established linear method that is great for finding significant variation within your data.

tSNE is a relatively new non-linear method that has become very popular because it is very flexible and can
often find structure in data when other methods cannot.

It’s always a good idea to play around with different methods and parameters before settling on a final
visualization. You will get a better feel for them the more you experiment. You should also get in the habit
of cross-checking your results with other techniques as a “sanity check”.

Suggested Reading

• A pretty good overview: https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

• Rahul Satija’s Seurat website: http://satijalab.org/seurat/get_started.html

– There are a few guided tutorials here that walk you through identifying dynamic genes, normalization,
scaling, linear dimensional reduction, determining statistically significant PCs, running tSNE, and
finding cluster biomarkers.

• Laurence van der Maaten: https://lvdmaaten.github.io/tsne/

– Has a link to the original t-SNE paper (2008)
– He is currently at Facebook with Yann LeCun (an NYU CS Prof)

• A cautionary tale: https://distill.pub/2016/misread-tsne/

Further notes on t-SNE

The conditional probability pj|i is given by a Gaussian, where the variance for each point, σ2
i , is different

for each and depends on its local density (these variances are called Gaussian kernels). The conditional
probability is defined as:

pj|i = exp(−|xi − xj|2/2σ2
i )∑

k 6=i exp(−|xi − xk|2/2σ2
i )

The joint probability pij is the average of pi|j and pj|i divided by the number of points, N:

pij =
pi|j + pj|i

2N

The distance qij between two points in the mapped space is given by a Student’s t-distribution and is defined
as:

qij = (1 + |xi − xj|2)−1∑
k 6=i(1 + |xi − xk|2)−1

The cost function C is a function of the Kullback-Leibler divergence, or relative entropy between all data
points in P and Q. For symmetric SNE, it is defined on the joint probabilities pij and qij as:
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C =
∑

i

KL(Pi||Qi) =
∑

i

∑
j

pij log
pij

qij

The perplexity is defined as Perp(Pi) = 2H(Pi), where H(Pi) is the Shannon entropy measured in bits:

H(Pi) = −
∑

j

pj|ilog2(pj|i)
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