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Outline

e (lustering
— Distance measures
—  Hierarchical
— K-means

—  Evaluating cluster quality



Genome-wide expression analysis

Goal: to measure RNA levels of all genes in a genome under various
experimental conditions

RNA levels vary with:

— Cell type

— Developmental stage
— External stimuli

— Disease state

Time and location of expression provide information on genes’ function
and interactions, and can be useful for many purposes, including disease
diagnostics and medical applications.



Common Analysis Tasks

Pattern Analysis

e |dentify up- and down-regulated genes.
e Find groups of genes with similar expression profiles.

e Find groups of experiments (tissues) with similar
expression profiles.

e Find genes that explain observed differences among
tissues (feature selection).



Gene expression profiling
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How can we find patterns in the data?



Gene expression matrix

Experiments (j)

The matrix entry at (i, j) is
the expression level of gene
I In experiment j.

Experiments could be:
e Time series

Genes (i)

e Different treatments
e Different tissues

Note: it is possible to find patterns even in totally random datal!



Types of analysis

e Unsupervised learning: learn from data only

— visualization: find structure in data

— clustering: find clusters/classes in data

e Supervised learning: learn from data plus prior
knowledge

— regression: predict a real value

— classification: predict discrete classes

e SVM, random forests, Bayes, KNN, neural networks



A series of experiments

Expression
level

Experiments

A 2-D plot of expression level for a single gene in many
different conditions.

The data points are connected by lines just to help
visualize the changes in level between conditions.



Gene expression in multiple
dimensions

Consider 3 experiments: x, y, and z
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The expression vector for each gene can be represented as a point in 3-dimensional space,
in which each axis represents a different condition.

Genes with similar expression patterns fall nearby one another in this multi-dimensional
space.



Gene expression in multiple
dimensions

Consider 3 experiments: x, y, and z
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The expression vector for each gene can be represented as a point in 3-dimensional space,
in which each axis represents a different condition.

Genes with similar expression patterns fall nearby one another in this multi-dimensional
space.

Genes with similar expression profiles are likely to have common or related functions, and
possibly to be co-regulated.

Similarly, conditions can be classified into different groups based on similarities in their
expression profiles (all or subsets of genes).



Coordinated gene expression

Which genes are co-expressed?

e Hierarchal clustering

e K-means clustering



Root of clustering approaches:
a pairwise matrix of distances

gene 1 | gene2

This matrix describes all the pairwise relationships (distances) between
the elements you are trying to group (genes in this case)

But how to define distance?



Calculating Distance

Distance is the most natural method for numerical data
Lower values indicate more similarity

Distance metrics

— Euclidean distance
— Manhattan distance
— FEtc.

Does not generalize well to non-numerical data
— What is the distance between “male” and “female™?



Distance Measures

e Fuclidian distance metric
Pythagorean theorem: a2 = b? + ¢?

Euclidian distance in 3 dimensions between two points,
X=(X1,X2,X3) and y=(y1,Y»,y3):

dy, Z\/(X1'Y1)2 + (Xp-y2)? + (X3-y3)?

In n-dimensions:

d=/Y(x -y
e Pearson correlation and Pearson distance (semi-metric)
o iiz%(xi-_X)(yi-_y) oo
/ > (xi-X)? / > (ymy)? -
d=1-r 0<d<?2

High degree of similarity implies a small distance and vice versa



Fuclidean distance
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Implication for gene expression:

experiments

the magnitude of expression values will determine distances




Covariance and Correlation

Start with the concept of covariance: 1000
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corre.la.tlon r= TVarXtVary the nice property of
coefficient (VarX){vary) varying between -1 and 1

Implication for gene expression:
the shape of gene expression responses will determine similarity



Grouping Objects: Clustering

Given a collection of objects, put objects into
groups based on similarity.

e Grouping complex entities such as expression
data can be a fuzzy problem.

e Expression data are complex because each gene
can have a value for many experiments (“high
dimensionality”)



Clustering approaches

e Agglomerative: hierarchical
* Divisive: partitioning methods



Hierarchical Clustering

* Find the pair(s) with the highest pairwise similarity (distance measure)
« Join these as a group and calculate an “average” profile

(single, average, or complete linkage)
* lteratively join groups until all are linked
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Linkage Methods

Use the distance between

Single linkage: @ @

the closest two points
between each pair of clusters



Linkage Methods

Complete linkage:

Use the distance between
the furthest two points
between each pair of clusters




Linkage Methods

e Find the central point within each
cluster based on all pairwise
differences between them

Centroid linkage: @ @

N
e Use the distance between the

centroids between each pair of
clusters



Linkage Methods

Average linkage:

Use the average distance between
each pair of points
between each pair of clusters

In phylogenetics, UPGMA (unweighted pair-group method with
arithmetic means) uses average linking.



Summary: Linkage Methods
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End Result

e Place genes with similar

expression profiles into clusters.

e Similarity is defined by Pearson
correlation.

Genes are grouped
according to similarities in
their expression levels
across a variety of
conditions.

Genes

(clustered by similarity in

expression profiles)
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K-means: Example, k = 3

Data Step 1
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Step 2: Compute centroids (big dots)
and reassign points to nearest centroids

Iteration 2, Step 2a

Final Results

Step 1: Choose k and assign points
randomly to different groups.

Iteration 1, Step 2a Iteration 1, Step 2b
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Step 3: Re-compute centroids, repeat
until stable (right: after 10 iterations)



K-means In action:
tends to create round clouds

Experiment 3 Experiment 3
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Source: Sorin, Draghici. Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition by
Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematical and Computational Biology, 2016



K-means: Weaknesses

Can give you a different result each time
with exactly the same data

Experiment 3
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Source: Sorin, Draghici. Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition by
Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematical and Computational Biology, 2016



K-means: Weaknesses

Must choose parameter k in advance, or try many values.

Data must be numerical and must be compared via Euclidean
distance (there is a variant called the k-medians algorithm to
address these concerns)

The algorithm works best on data which contains spherical
clusters; clusters with other geometry may not be found.

The algorithm is sensitive to outliers -- points which do not belong
in any cluster. These can distort the centroid positions and ruin
the clustering.



Clustering has no one answer

e Given a collection of objects, put objects into groups
based on similarity.

e |t really depends on how you measure
similarity/dissimilarity

Problem: Sometimes genes with pretty similar expression
can end up in different clusters!

Hilinil




Measuring the Quality of Clusters

This point has a
high a; and a low

Data point b, so a low
(mean of replicates)\ Silhouette value
@ @ Implicit cluster
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These points
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a big b; so a high
Silhouette value

Can use bootstrapping to measure confidence in cluster assighment



Judging Clustering Quality:
Silhouette width

|deally, we want well separated, distinct groups

- Maximize between-cluster distance
-  Minimize within-cluster distance

distance=5

size=5
3D

s(i) = (b~a;)/max(a;b;)

a;: average within cluster distance with respect to gene i
b;: average between cluster distance with respect to gene i

distance=20

= s(i) will be negative when i is more more similar to points in
another cluster than to points in the same cluster



Silhouette plots

Cluster Dendrogram . . s e
?I:ozuoege plot of (x = c2, dist = d) 2 e Cl
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1: 99 genes
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Where to cut the tree? Silhouette width, s;

Average silhouette width: 0.6

= ldeally we would like to maximize the average silhouette distance



Silhouette plots
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Four different datasets:

Data
. . .
- ¥ . 13 § o
= - - o ) . . .
Y o.o. fe 0 o S ey Sakor 2 o %
= . 5 Oo;.o.’ ¥ . '. 4°"°° et b e o.
.
. *e SR T O T O . Wt ..
o ey L2 e sp iy e . e elet = e
"..' il ] [ b . - ' PR “e '.’." '°. . . A
- 3 = w e . . Y g %
. [ L) . . - - o, e
Lot N Vel ':°;. s In- o s el IS S IO v x
.
BTN N . . TR o
. 1 . . PEES O A e
. P o ® o . e . .
. i e "
. e Y 4 .
- - . b . e . 2 .
.
. ‘e 2 . .

Cluster Dendrogram
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Another example
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The partitioning with k = 2 has
the highest average silhouette
width, and thus provides the
most distinct clusters.

You may have additional data,
however, suggesting that there
really are more than 2 groups

(e.g. single-cell data in which the
yellow and purple clusters can be
distinguished based on coherent
expression of cell-type-specific
markers / gene sets)



Choosing the right number of clusters

Average silhouette width

Optimal number of clusters

Number of clusters k

Maximum average
silhouette width

Optimal number of clusters

Total Within Sum of Square

Number of clusters k

Elbow method

= Can also use the Gap statistic, which measures within-cluster
variation relative to expectation for a reference distribution with
no clustering (want to maximize the difference between these)



