Clustering Methods

XDASI Fall 2021 Kris Gunsalus

Outline

• Clustering

- Distance measures
- Hierarchical
- K-means
- Evaluating cluster quality

Genome-wide expression analysis

- Goal: to measure RNA levels of all genes in a genome under various experimental conditions
- RNA levels vary with:
 - Cell type
 - Developmental stage
 - External stimuli
 - Disease state
- Time and location of expression provide information on genes' function and interactions, and can be useful for many purposes, including disease diagnostics and medical applications.

Common Analysis Tasks

Pattern Analysis

- Identify up- and down-regulated genes.
- Find groups of genes with similar expression profiles.
- Find groups of experiments (tissues) with similar expression profiles.
- Find genes that explain observed differences among tissues (feature selection).

Gene expression profiling

How can we find patterns in the data?

Gene expression matrix

Experiments (*j*)

The matrix entry at (*i*, *j*) is the expression level of gene *i* in experiment *j*.

Experiments could be:

- Time series
- Different treatments
- Different tissues

• ...

Note: it is possible to find patterns even in totally random data!

Types of analysis

- Unsupervised learning: learn from data only
 - visualization: find structure in data
 - clustering: find clusters/classes in data
- Supervised learning: learn from data plus prior knowledge
 - regression: predict a real value
 - classification: predict discrete classes
 - SVM, random forests, Bayes, KNN, neural networks

A series of experiments

A 2-D plot of expression level for a single gene in many different conditions.

The data points are connected by lines just to help visualize the changes in level between conditions.

Gene expression in multiple dimensions

Consider 3 experiments: x, y, and z

- The expression vector for each gene can be represented as a point in 3-dimensional space, in which each axis represents a different condition.
- Genes with similar expression patterns fall nearby one another in this multi-dimensional space.

Gene expression in multiple dimensions

Consider 3 experiments: x, y, and z

- The expression vector for each gene can be represented as a point in 3-dimensional space, in which each axis represents a different condition.
- Genes with similar expression patterns fall nearby one another in this multi-dimensional space.
- Genes with similar expression profiles are likely to have common or related functions, and possibly to be co-regulated.
- Similarly, conditions can be classified into different groups based on similarities in their expression profiles (all or subsets of genes).

Coordinated gene expression

Which genes are co-expressed?

- Hierarchal clustering
- K-means clustering
- Self-organizing maps
- Principal component analysis

Root of clustering approaches: a pairwise matrix of distances

	gene 1	gene2	gene 3
gene 1	1	0.5	0.8
gene 2	-	1	0.6
gene 3	-	-	1

This matrix describes all the pairwise relationships (distances) between the elements you are trying to group (genes in this case)

But how to define distance?

Calculating Distance

- Distance is the most natural method for numerical data
- Lower values indicate more similarity
- Distance metrics
 - Euclidean distance
 - Manhattan distance
 - Etc.
- Does not generalize well to non-numerical data
 - What is the distance between "male" and "female"?

Distance Measures

• Euclidian distance metric

Pythagorean theorem: $a^2 = b^2 + c^2$

Euclidian distance in 3 dimensions between two points, $x=(x_1,x_2,x_3)$ and $y=(y_1,y_2,y_3)$:

$$d_{12} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

In n-dimensions: $d = \sqrt{\sum(x - y_i)^2}$

$$d = \sqrt{\sum (x_i - y_i)^2}$$

• Pearson correlation and Pearson distance (semi-metric)

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} \quad -1 \le r \le 1$$
$$d = 1 - r \quad 0 \le d \le 2$$

High degree of similarity implies a small distance and vice versa

Euclidean distance

Implication for gene expression: the *magnitude* of expression values will determine distances

Covariance and Correlation

Start with the concept of covariance:

 $Cov_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}$

But ... covariance ranges from $-\infty$ to $+\infty$

Normalize the measure using the variance of two measurements, VarX and VarY

Pearson correlation has the nice property of varying between -1 and 1

Implication for gene expression: the **shape** of gene expression responses will determine similarity

Grouping Objects: Clustering

Given a collection of objects, put objects into groups based on similarity.

- Grouping complex entities such as expression data can be a fuzzy problem.
- Expression data are complex because each gene can have a value for many experiments ("high dimensionality")

Clustering approaches

- Agglomerative: hierarchical
- Divisive: partitioning methods

Hierarchical Clustering

- Find the pair(s) with the highest pairwise similarity (*distance measure*)
- Join these as a group and calculate an "average" profile (single, average, or complete linkage)
- Iteratively join groups until all are *linked*

Single linkage:

Use the distance between the closest two points between each pair of clusters

Complete linkage:

Use the distance between the furthest two points between each pair of clusters

Centroid linkage:

- Find the central point within each cluster based on all pairwise differences between them
- Use the distance between the centroids between each pair of clusters

Average linkage:

Use the average distance between each pair of points between each pair of clusters

In phylogenetics, UPGMA (unweighted pair-group method with arithmetic means) uses average linking.

Summary: Linkage Methods

Single linkage

Complete linkage

Centroid linkage

Average linkage

Minimum distance

Maximum distance Mean distance Average pair-wise distance

End Result

- Place genes with similar expression profiles into clusters.
- Similarity is defined by Pearson correlation.

Genes are grouped according to similarities in their expression levels across a variety of conditions.

K-means: Example, k = 3

Step 1: Choose k and assign points randomly to different groups.

<u>Step 2:</u> Compute centroids (big dots) and reassign points to nearest centroids

<u>Step 3:</u> Re-compute centroids, repeat until stable (right: after 10 iterations)

K-means in action: tends to create round clouds

Source: Sorin, Drăghici. Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition by Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematical and Computational Biology, 2016

K-means: Weaknesses

Can give you a different result each time with exactly the same data

Source: Sorin, Drăghici. Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition by Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematical and Computational Biology, 2016

K-means: Weaknesses

- Must choose parameter k in advance, or try many values.
- Data must be numerical and must be compared via Euclidean distance (there is a variant called the k-medians algorithm to address these concerns)
- The algorithm works best on data which contains spherical clusters; clusters with other geometry may not be found.
- The algorithm is sensitive to outliers -- points which do not belong in any cluster. These can distort the centroid positions and ruin the clustering.

Clustering has no one answer

- Given a collection of objects, put objects into groups based on similarity.
- It really depends on how you measure similarity/dissimilarity

Problem: Sometimes genes with pretty similar expression can end up in different clusters!

Measuring the Quality of Clusters

Can use bootstrapping to measure confidence in cluster assignment

Judging Clustering Quality: Silhouette width

Ideally, we want well separated, distinct groups

- Maximize *between*-cluster distance
- Minimize within-cluster distance

$\boldsymbol{s(i)} = (b_i - a_i) / \max(a_i, b_i)$

a_i: average within cluster distance with respect to gene *i b_i*: average between cluster distance with respect to gene *i*

 \Rightarrow s(i) will be negative when i is more more similar to points in another cluster than to points in the same cluster

Silhouette plots

Where to cut the tree?

Average silhouette width: 0.6

 \Rightarrow Ideally we would like to maximize the average silhouette distance

Silhouette plots

Four different datasets:

Another example

The partitioning with k = 2 has the highest average silhouette width, and thus provides the most distinct clusters.

You may have additional data, however, suggesting that there really are more than 2 groups

(e.g. single-cell data in which the yellow and purple clusters can be distinguished based on coherent expression of cell-type-specific markers / gene sets)

Choosing the right number of clusters

Maximum average silhouette width

Elbow method

 \Rightarrow Can also use the *Gap statistic*, which measures within-cluster variation relative to expectation for a reference distribution with no clustering (want to maximize the difference between these)